
Control Systems and Optimization Letters, Vol. 2, No 2, 2024

ISSN: 2985-6116, DOI: 10.59247/csol.v2i2.132 217

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Benchmark Analysis of Sampling Methods for RRT

Path Planning

Gilang Nugraha Putu Pratama 1,*, Oktaf Agni Dhewa 2, Ardy Seto Priambodo 3, Faris Yusuf Baktiar 4,

Rizky Hidayat Prasetyo 5, Mentari Putri Jati 6, Indra Hidayatulloh 7
1,2,3,4,5 Department of Electrical and Electronics Engineering, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia

6 Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, Taiwan
7 Glasgow Caledonian University, Glasgow, Scotland

Email: 1 gilang.n.p.pratama@uny.ac.id, 6 t111999402@ntut.edu.tw, 7 jraeeuny@gmail.com

*Corresponding Author

Abstract—Path planning is a crucial aspect of mobile robot

navigation, ensuring that robots can safely travel from their

initial position to the goal. In real-world applications, path

planning is essential for autonomous vehicles, drones,

warehouse robots, and rescue robots to navigate complex

environments efficiently and safely. One effective method for

path planning is the Rapidly-exploring Random Tree (RRT)

algorithm, which is particularly practical in maze-like

environments. The performance of RRT depends on the

sampling methods used to explore the maze. Sampling methods

are important because they determine how the algorithm

explores the search space, affecting the efficiency and success of

finding an optimal path. Poor sampling can lead to suboptimal

or infeasible paths. In this study, we investigate different

sampling strategies for RRT, specifically focusing on uniform

sampling, Gaussian sampling, and the Motion Planning

Network (MPNet) sampling. MPNet leverages a neural network

trained on past environments, allowing it to predict promising

regions of the search space quickly, unlike traditional methods

like RRT that rely on random exploration without prior

knowledge. This makes MPNet much faster and more efficient,

especially in complex or high-dimensional spaces. Through a

benchmarking analysis, we compare these methods in terms of

their effectiveness in generating feasible paths. The results

indicate that while all three methods are effective, MPNet

sampling outperforms uniform and Gaussian sampling,

particularly in terms of path length. The mean path length

generated, based on a sample size of 30, is 13.115 meters for

MPNet, which is shorter compared to uniform and Gaussian

sampling, which are 18.27 meters and 18.088 meters,

respectively. These findings highlight the potential to enhance

path planning algorithms using learning-based sampling

methods.

Keywords—RRT, Path Planning, Sampling Methods,

Benchmarking, Deep Learning

I. INTRODUCTION

Navigation is a necessary aspect of mobile robots, as it

enables them to operate autonomously in dynamic and

complex environments [1]. In real-world applications,

navigation is crucial for ensuring that robots can perform

tasks effectively without human intervention, whether it's for

delivering goods in a warehouse, conducting inspections in

hazardous areas, or monitoring crops in agriculture.

Successful navigation allows robots to interact with their

surroundings, avoid obstacles, and make real-time decisions

to reach their destinations. It involves the ability of mobile

robots to move through environments while avoiding

obstacles and reaching their goals [2]. Safe and efficient path

planning is mandatory in many mobile robot applications,

such as industrial automation [3], search and rescue missions

[4], surveillance [5], and even agriculture [6], where robots

must navigate cluttered or unpredictable terrains.

To achieve effective navigation, path planning algorithms

play a central role by generating feasible routes that guide the

robot from its starting point to the target location. Among the

various path planning methods, one of the most widely used

is the Rapidly-exploring Random Tree (RRT) algorithm.

RRT is particularly well-suited for environments with

complex or unknown geometries, where traditional grid-

based methods may struggle to efficiently explore the search

space. The RRT is widely used for mobile robots, especially

in intricate and high-dimensional spaces [7]-[10]. It was

introduced by Steven M. LaValle in 1998 to address the

limitations of traditional path planning methods, which often

struggle to explore large and complex environments [11].

Technically speaking, RRT builds a tree of possible paths

from the starting point toward the goal, making it a reliable

method for navigating dynamic environments.

Despite its prominence, the performance and efficiency of

the RRT algorithm are greatly influenced by the sampling

methods used to explore the search space. It is fair to state

that an effective sampling strategy is necessary, as it

determines the quality of the generated paths and the time

taken to reach the goal. Different sampling methods, such as

uniform and Gaussian sampling, offer varying levels of

efficiency, affecting the success rate of the navigation task.

Uniform sampling involves selecting random points from

the search space with a uniform probability distribution.

Every point in the space has an equal chance of being chosen

[12]-[14]. Wang et al. use RRT with uniform sampling to

ensure effective exploration of different regions. The method

has practical applications for disinfecting robots in

environments with complex obstacles, emphasizing

efficiency and reliability in path planning [15].

On the other hand, Gaussian sampling involves

generating random points around a mean with a certain

standard deviation. Typically, a pair of samples are generated

where one sample is near a randomly chosen point, and the

other is farther away [16]-[18]. Some related research

includes a study conducted by Yuncheng and Jie, who use the

Gaussian sampling method for RRT path planning. Their

http://dx.doi.org/10.59247/csol.v2i2.132
https://creativecommons.org/licenses/by/4.0/
mailto:gilang.n.p.pratama@uny.ac.id
mailto:t111999402@ntut.edu.tw
mailto:jraeeuny@gmail.com

Control Systems and Optimization Letters, Vol. 2, No 2, 2024 218

Gilang Nugraha Putu Pratama, Benchmark Analysis of Sampling Methods for RRT Path Planning

approach extends to higher-dimensional spaces, such as 3D,

for practical applications in robot motion planning [19].

Meanwhile, deep learning-based sampling methods are

revolutionizing the field of robotics [20]. Deep learning

enables machines to adapt to intricate environments. It has

significantly improved the capabilities of robots in

perception, decision-making, and path planning [21], [22].

One notable application of deep learning in robotics is the

development of the Motion Planning Network (MPNet),

which has the potential to enhance the performance of path

planning algorithms [23], [24]. MPNet leverages deep neural

networks to predict promising regions of the search space,

leading to more efficient and accurate path planning.

In this study, we will compare and benchmark the

performance of RRT using different sampling methods—

uniform, Gaussian, and MPNet—in a maze-like scenario.

This comparison will help us understand the impact of deep

learning on sampling efficiency and path quality in complex

environments. The remainder of this paper is organized as

follows. The necessary methods for RRT and the sampling

methods are briefly explained in Section II. In Section III, we

discuss the results of our simulations, covering the model

building, simulation preparation, and analysis of the results.

Finally, future work and the conclusions of this paper are

presented in Section IV.

II. RRT PATH PLANNING AND SAMPLING METHODS

This section covers several topics. Subsection II.A

introduces path planning with RRT, providing a brief

overview of basic planning and the importance of appropriate

sampling methods. Subsections II.B and II.C focus on the

uniform and Gaussian sampling methods, discussing their

respective advantages and disadvantages. Finally, subsection

II.D presents MPNet as a more effective alternative for

sampling.

A. RRT Path Planning

 The RRT algorithm was introduced by Steven M. LaValle

in 1998 to handle high-dimensional motion planning

problems [11]. The key feature of RRT is the ability to

efficiently explore complex, high-dimensional spaces,

making it useful for real-time path planning in many robotics

applications [7]-[10].

 The RRT works by incrementally growing a tree rooted

at the start configuration. In each iteration, a random sample,

q_rand, is generated in the configuration space. The nearest

node in the tree, q_near, is identified, and a new node, q_new,

is created by moving from q_near toward q_rand by a fixed

step size, ϵ. The fixed step size (ε) affects the exploration

efficiency and path smoothness. A smaller ε allows the tree

to explore the space in finer detail, potentially leading to

smoother and more precise paths, but at the cost of increased

computation time. Conversely, a larger ε enables faster

exploration by covering more space with each step, but it can

result in less optimal, jagged paths.

 It should be noted that the new node is added to the tree

as long as it lies in a free space. It continues this process until

a node is added near the goal configuration, successfully

generating a path [11].

The main steps in RRT can be summarized as follows:

1. Sample a random point q_rand in the configuration space.

2. Find the nearest node in the existing tree, q_near.

3. Move from q_near toward q_rand by a step size ϵ to

generate q_new.

4. Check if q_new is in the free space. If it is, add it to the

tree.

5. Repeat until the goal is reached or a specified number of

iterations is completed.

 The efficiency in high-dimensional spaces makes RRT

ideal for robot motion planning, autonomous vehicle

navigation, and manipulation tasks. Nevertheless, in order to

achieve such an efficiency, RRT needs a suitable sampling

method [25]. They are crucial in RRT as they dictate how the

configuration space is explored, by strategically selecting

points in the space, the tree can grow efficiently, reaching

different regions and avoiding unnecessary detours [26].

Proper sampling method improves the ability of RRT to

navigate complex environments, such as those with narrow

passages or obstacles. These methods also help balance

exploration and exploitation, ensuring that the path toward

the goal is both feasible and optimized. The right sampling

strategy can significantly improve the performance of RRT

and convergence rate.

B. Uniform Sampling Method

 Uniform sampling in RRT is a method where samples are

generated randomly and uniformly across the entire

configuration space [12]. Uniform sampling ensures that the

tree grows in an unbiased manner, covering all regions of the

space equally. This approach works well in large, open areas,

as it prevents the algorithm from being overly concentrated

in any specific region and ensures broad exploration [13].

Uniform sampling assists the RRT algorithm in efficiently

discovering feasible paths while avoiding obstacles and dead

ends. It is also easy to implement and does not require

additional computations for generating samples [14].

 However, uniform sampling has notable limitations,

especially in more complex environments. In environments

with narrow passages or cluttered spaces, the random nature

of uniform sampling often results in many samples being

placed in open areas rather than in critical regions near

narrow pathways. Since uniform sampling does not prioritize

these narrow, solution-critical regions, it can take

significantly more iterations to successfully navigate through

tight spaces. Additionally, in large open areas, uniform

sampling can lead to redundant tree growth because the

algorithm may unnecessarily explore regions that are already

well-covered, instead of focusing on areas closer to the goal.

This inefficiency results in slower path generation and a less

optimal exploration strategy, especially in environments with

varying complexity. Thus, while uniform sampling is easy to

implement, its lack of bias towards important regions can

make it less effective in environments where strategic

exploration is needed.

C. Gaussian Sampling Method

Gaussian sampling, as its name suggests, is a method

where samples are drawn from a Gaussian distribution,

focusing more on areas near obstacles or regions of interest

[16]. This allows the RRT algorithm to concentrate its search

in challenging regions, improving its performance in

environments with complex geometries, such as narrow

passages, where uniform sampling might struggle. By

concentrating samples near obstacles, Gaussian sampling

Control Systems and Optimization Letters, Vol. 2, No 2, 2024 219

Gilang Nugraha Putu Pratama, Benchmark Analysis of Sampling Methods for RRT Path Planning

helps the RRT algorithm explore critical, constrained areas

with higher precision, improving its chances of finding

feasible paths through tight spaces [17]. This method reduces

the number of iterations needed to find a valid path compared

to uniform sampling, especially in constrained spaces. The

reason for this efficiency improvement lies in the fact that

Gaussian sampling increases the likelihood of placing

samples near difficult-to-navigate areas, such as obstacles

and bottlenecks, where uniform sampling might overlook due

to its equal treatment of the entire space. Focusing on these

critical areas allows the algorithm to explore the essential

regions earlier, shortening the search time.

However, Gaussian sampling may require fine-tuning of

key parameters, such as the variance of the distribution,

which controls how spread out or concentrated the samples

are around obstacles. To optimize these parameters in

practice, techniques like cross-validation or gradient-based

optimization can be employed, adjusting the variance to

strike a balance between broad exploration and precise

exploitation [18]. A properly tuned variance ensures that the

algorithm effectively navigates through both open spaces and

tight corridors. In this scenario, Gaussian sampling improves

efficiency by focusing samples around walls and narrow

doorways, allowing the mobile robot to quickly find paths

through the complex layout without being overwhelmed by

irrelevant open areas.

While Gaussian sampling is particularly useful in

scenarios where obstacles and tight spaces dominate the

configuration space, its ability to selectively focus on critical

regions is what gives it an edge over uniform sampling in

terms of reducing the number of iterations and overall

computational cost.

D. Motion Planning Networks

It is developed to tackle the limitations of traditional

motion planning algorithms, which often struggle in high-

dimensional spaces and complex environments. Traditional

path planning algorithms like RRT are computationally

intensive and slow when dealing with intricate obstacles. In

2019, A.H. Qureshi et al. introduced MPNet, which combines

neural networks with classical sampling-based motion

planning techniques. This hybrid approach enables the

system to learn from past experiences and generalize to

unseen environments [27]. Instead of randomly sampling

points in every new environment, as done in methods like

Gaussian and uniform sampling, MPNet is trained on a

variety of past environments, allowing it to understand

common path structures and efficiently apply this knowledge

in new scenarios. When planning paths, MPNet focuses its

exploration on the most promising regions, guided by its

learned model, eliminating the inefficiency of random,

potentially unproductive samples [28]. This focused

exploration leads to the generation of shorter and smoother

paths, reducing the need for post-processing to optimize the

path. This innovation enables faster and more efficient path

planning, as it can predict feasible paths even in challenging

scenarios [29].

Furthermore, MPNet excels in high-dimensional spaces,

where traditional methods face an exponential increase in

complexity. By predicting points based on its understanding

of the environment, MPNet avoids the inefficiencies of

random sampling in such complex scenarios. As MPNet

generalizes across different environments, it applies its

learned knowledge to new spaces without needing to start

from scratch, making it highly adaptable [30]. Finally, this

informed sampling dramatically reduces the computational

load, resulting in faster path planning and enabling real-time

performance where traditional methods would struggle due to

time constraints.

Technically, MPNet consists of two main modules. The

first module encodes the input map environment into a

compact representation using a basis point set encoding

approach [30]. This encoded representation is smaller than

the original map, which is particularly beneficial in real-time

scenarios, where map environments are typically large and

sparse. Encoding the map reduces input data sparsity, lowers

computational complexity, and shortens the training time.

The encoded environment is then stored as a map object.

The second module is a feed-forward neural network,

consisting of an input layer, one or more hidden layers, and

an output layer. Each hidden layer includes a fully connected

layer, a ReLU (Rectified Linear Unit) activation layer, and a

dropout layer. The ReLU activation layer introduces non-

linearity, enabling the network to capture and represent

complex, non-linear relationships in the data [31], [32]. The

dropout layer helps prevent overfitting by randomly setting a

fraction of input units to zero during training.

III. RESULTS AND DISCUSSION

In this section, we will implement various sampling

methods for RRT path planning on a mobile robot navigating

a maze-like map. The robot starts from an initial position and

must reach a designated goal. However, before proceeding,

we need to prepare the data for training and validation, and

create the MPNet model, as detailed in subsection III.A. Once

the model is built, we can generate a new map with a defined

start and goal for the robot, then apply the different sampling

methods for RRT path planning. In subsection III.B, each

sampling method is tested over 30 runs to generate a path

using RRT. Finally, subsection III.C presents the analysis,

evaluating parameters such as path length and initialization

time to determine the most suitable sampling method among

uniform, Gaussian, and MPNet for this scenario.

A. Build the Model

Before proceeding, we first need to explain the

specifications of our simulation. We use MATLAB on

Ubuntu 22.04 LTS to simulate and gather 80000 maze-like

maps, splitting them in a 50:50 ratio for training and

validation. These maps are represented as binary occupancy

grids with two colors: black for stationary obstacles or walls

and white for free space.

The data is trained for 50 epochs, with shuffling applied

at each epoch. Additionally, the Adam optimizer is employed

due to its reliability and computational efficiency [33]. It is a

robust algorithm for training deep neural networks, aimed at

minimizing regret—a measure used to evaluate the

performance of adaptive learning rate optimization

algorithms [34]. It uses AdaGrad's approach to adapt learning

rates for each parameter based on the gradients' history,

helping with sparse data. At the same time, it incorporates

RMSProp's ability to adjust learning rates based on recent

gradient magnitudes, making it effective in non-stationary

settings. Then, by combining these techniques, Adam

Control Systems and Optimization Letters, Vol. 2, No 2, 2024 220

Gilang Nugraha Putu Pratama, Benchmark Analysis of Sampling Methods for RRT Path Planning

balances fast convergence with robust performance,

especially in deep learning tasks [35].

The training is performed over 50 epochs, with a total of

15250 iterations. As shown in Fig. 1, the training and

validation losses are plotted on a logarithmic scale.

Fig. 1. The training and validation loss

 The losses are decreasing over time, and by the end of the

15250 iterations, the training loss is 0.127, while the

validation loss is 0.538. Since the validation loss is higher

than the training loss, suggests potential overfitting.

However, it is common and acceptable for the validation loss

to be slightly larger than the training loss. Overfitting

becomes a concern if the validation loss continuously

increases as the training loss decreases. Since this is not the

case here, the model is considered acceptable.

B. Simulation on Binary Occupancy Map

 First, we need to define the binary occupancy map, as

shown in Fig. 2.

Fig. 2. Binary occupancy map

 The map has dimensions of 10 by 10, where the mobile

robot's initial position is at (7, 1), represented by a blue

square, and the goal is at (1, 9), marked by a blue star. There

are walls obstructing the path, and the generated path must

efficiently guide the mobile robot from the start to the goal

while avoiding these obstacles.

 The next step is to apply the RRT algorithm using

different sampling methods to generate a path toward the

goal. The results are shown in Fig. 3, Fig. 4, and Fig. 5 for

uniform sampling, Gaussian sampling, and MPNet,

respectively.

Fig. 3. Path generated with uniform sampling

Fig. 4. Path generated with gaussian sampling

Fig. 5. Path generated with MPNet

Control Systems and Optimization Letters, Vol. 2, No 2, 2024 221

Gilang Nugraha Putu Pratama, Benchmark Analysis of Sampling Methods for RRT Path Planning

 While all sampling methods successfully generate a path,

it is clear from the figures that MPNet outperforms the others.

RRT with MPNet efficiently samples points to create a direct

path to the goal. In contrast, both uniform and Gaussian

sampling tend to be less efficient, as they select points farther

from the goal. Additionally, the paths generated with uniform

and Gaussian sampling are too close to the walls, increasing

the risk of collision. Therefore, the path generated by RRT

with MPNet is more efficient and safer compared to those

produced by uniform and Gaussian sampling.

C. Benchmark Analysis

In this section, we will run simulations for the sampling

methods to generate additional paths. The RRT with each

sampling method will generate 30 paths.

It is evident that the path generated in each iteration will

differ due to the inherent randomness of RRT. More

importantly, from Fig. 6, we can see that MPNet (right)

provides more convergent paths compared to the others. Both

uniform (left) and Gaussian sampling (center) yield more

variation than MPNet. We can further analyze this using

statistical data for key parameters. Several parameters will be

considered for analyzing the performance of these sampling

methods.

Fig. 6. Path comparison for each sampling method

The first parameter is the success rate of RRT with each

sampling method in generating valid paths from the initial

position to the goal, which indicates the effectiveness of the

algorithm. Statistically, the success rate for each sampling

method in generating valid paths is 100%, as shown in Fig. 7.

This high success rate is largely attributed to the relatively

simple structure of the map used in this scenario, which lacks

highly complex or challenging obstacles.

Fig. 7. Success rate for finding valid paths

The straightforward nature of the maze-like map allowed

all sampling methods to consistently generate paths without

failure. This implies that all of the methods can be

implemented in our scenario for generating paths in a maze-

like map with a sample size of 30. However, in more complex

environments with tighter constraints or intricate obstacles,

the success rate may vary depending on the sampling method

used. The next parameter to consider is the path length, which

is important because we aim for the paths to be both effective

and efficient. In this case, shorter paths tend to be more

efficient, and vice versa. After running the simulations, we

gathered the statistics for the path lengths for each sampling

method, as presented in Table 1.

Table 1. Path length

Sampling Methods

Path Length (meters)

Mean Median
Standard

Deviation

Uniform sampling 18.27 18.427 2.0727

Gaussian sampling 18.088 17.726 2.0159

MPNet 13.115 12.936 0.7231

Based on Table 1, it can be concluded that MPNet not

only provides the shortest path but also tends to be consistent,

with a low standard deviation. The mean and median path

lengths using MPNet are 13.115 meters and 12.936 meters,

respectively. These values are lower compared to uniform

sampling, with a mean of 18.27 meters and a median of

18.427 meters, as well as Gaussian sampling, with a mean of

18.088 meters and a median of 17.726 meters. The standard

deviation for MPNet is also the smallest. Specifically, the

standard deviations for uniform sampling, Gaussian

sampling, and MPNet are 2.0727 meters, 2.0159 meters, and

0.7231 meters, respectively. This indicates that the path

lengths generated with MPNet are more consistent compared

to the other two methods. The statistical visualization is

shown in Fig. 8, where the box plot diagram for path lengths

is presented.

Fig. 8. Box plot diagram for path length

A shorter path and consistent performance is crucial for

real-world applications such as autonomous navigation.

Shorter paths directly reduce the time and energy required for

a robot to reach its destination, which is especially critical in

scenarios like drone delivery, autonomous driving, or

industrial robots where efficiency translates to operational

cost savings and faster task completion. Consistent path

lengths, indicated by a lower standard deviation, also ensure

more predictable behavior in complex environments, which

is important for safety, especially in dynamic and

unpredictable settings.

Control Systems and Optimization Letters, Vol. 2, No 2, 2024 222

Gilang Nugraha Putu Pratama, Benchmark Analysis of Sampling Methods for RRT Path Planning

As seen in Fig. 7, the median (Q2) for MPNet is the

lowest, followed by Gaussian and then uniform sampling. It

also shows that there are outliers for MPNet, where the path

lengths exceed 14 meters. However, these outliers are still

smaller than the median values for both uniform and

Gaussian sampling, suggesting that MPNet yields better

overall results. Additionally, Fig. 7 shows that the longest

path is generated using uniform sampling, with a length

exceeding 22 meters. In practical terms, longer paths and

higher variability can lead to increased energy consumption,

slower task execution, and reduced reliability, all of which

are undesirable in time-sensitive or resource-limited

applications. Thus, the ability to consistently generate shorter

and smoother paths highlights its effectiveness in real-world

navigation tasks.

The last parameter to consider is the initialization time,

which indicates how long it takes to initialize the function and

execute it. The initialization time is measured during the

execution of the planner. A shorter initialization time is

desirable so that the generated path can be quickly built.

Based on a sample size of 30 from the simulation, the

statistics for initialization time are presented in Table 2.

Table 2. Initialization time

Sampling Methods

Initialization Time (ms)

Mean Median
Standard

Deviation

Uniform sampling 5.74 5.74 0

Gaussian Sampling 11.908 11.908 0

MPNet 5.41 5.41 0

As shown in Table 2, MPNet requires the shortest

initialization time at only 5.41 milliseconds, whereas uniform

and Gaussian sampling take 5.74 milliseconds and 11.908

milliseconds, respectively. Interestingly, the initialization

times are consistent for each method, with a standard

deviation of 0. This consistency means that the minimum,

median, mean, and maximum values are the same for all of

them. As a result, when visualizing the data in a box plot, we

get straight lines, as shown in Fig. 9.

Fig. 9. Box plot diagram for initialization time

In Fig. 9, we can see that the minimum, mean, median,

and maximum values are all the same, and there are no

outliers.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, we conduct a benchmark analysis of

sampling methods for RRT path planning. The sampling

methods—uniform sampling, Gaussian sampling, and

MPNet—all successfully generate valid paths with RRT. By

analyzing data from a sample size of 30 generated paths, we

conclude that MPNet produces shorter paths compared to the

other methods. The mean path length generated by MPNet is

13.115 meters, which is shorter than the paths produced by

uniform sampling at 18.27 meters and Gaussian sampling at

18.088 meters. Moreover, MPNet tends to generate more

consistent paths, as evidenced by its low standard deviation

of 0.7231 meters. In contrast, the standard deviations for

uniform sampling and Gaussian sampling are larger, at

2.0727 meters and 2.0159 meters, respectively. Additionally,

the initialization time for MPNet is the fastest, requiring only

5.41 milliseconds, compared to 5.74 milliseconds and 11.908

milliseconds for uniform and Gaussian sampling,

respectively. The ability of MPNet to generate shorter and

more consistent paths with faster initialization times makes it

highly suitable for use in time-sensitive and resource-

constrained environments, such as autonomous navigation in

warehouses where a shorter path can significantly enhance

the efficiency of robots tasked with retrieving or transporting

goods, reducing operational time and energy consumption.

In the future, there are several directions for further

research. We plan to implement RRT path planning on an

actual mobile robot, and we are also considering developing

a hybrid sampling method that combines Gaussian and

uniform sampling. Such advancements could further

optimize path planning for various real-world autonomous

systems, pushing the boundaries of what these technologies

can achieve in practical applications.

REFERENCES

[1] N. Azhar and P. T. Aji, “Enhance the Balance of Quadruped Robot

using CMPS12,” Journal of Robotics, Automation, and Electronics

Engineering, vol. 1, no. 2, pp. 100-115, 2024,
https://doi.org/10.21831/jraee.v1i2.170.

[2] O. Wahyunggoro, H. H. Triharminto, and A. I. Cahyadi, "Safe Robot

Path Planning and Obstacle Avoidance using Efficient Genetic
Algorithm,” International Journal on Electrical Engineering and

Informatics, vol. 15, no. 3, pp. 387-400, 2023,
https://doi.org/10.15676/ijeei.2023.15.3.2.

[3] H. Zhang, Y. Wang, J. Zheng and J. Yu, "Path Planning of Industrial

Robot Based on Improved RRT Algorithm in Complex Environments,"
IEEE Access, vol. 6, pp. 53296-53306, 2018,
https://doi.org/10.1109/ACCESS.2018.2871222.

[4] S. H. Alsamhi et al., “UAV computing-assisted search and rescue
mission framework for disaster and harsh environment mitigation,”

Drones, vol. 6, no. 7, p. 154, 2022,
https://doi.org/10.3390/drones6070154.

[5] G. M. De Lima Filho, A. Passaro, G. M. Delfino, L. De Santana and H.

Monsuur, "Time-Critical Maritime UAV Mission Planning Using a
Neural Network: An Operational View," IEEE Access, vol. 10, pp.

111749-111758, 2022,
https://doi.org/10.1109/ACCESS.2022.3215646.

[6] H. S. Hewawasam, M. Y. Ibrahim and G. K. Appuhamillage, "Past,

Present and Future of Path-Planning Algorithms for Mobile Robot
Navigation in Dynamic Environments," IEEE Open Journal of the

Industrial Electronics Society, vol. 3, pp. 353-365, 2022,
https://doi.org/10.1109/OJIES.2022.3179617.

[7] R. Mashayekhi, M. Y. I. Idris, M. H. Anisi and I. Ahmedy, "Hybrid

RRT: A Semi-Dual-Tree RRT-Based Motion Planner," IEEE Access,

vol. 8, pp. 18658-18668, 2020,
https://doi.org/10.1109/ACCESS.2020.2968471.

https://doi.org/10.21831/jraee.v1i2.170
https://doi.org/10.15676/ijeei.2023.15.3.2
https://doi.org/10.1109/ACCESS.2018.2871222
https://doi.org/10.3390/drones6070154
https://doi.org/10.1109/ACCESS.2022.3215646
https://doi.org/10.1109/OJIES.2022.3179617
https://doi.org/10.1109/ACCESS.2020.2968471

Control Systems and Optimization Letters, Vol. 2, No 2, 2024 223

Gilang Nugraha Putu Pratama, Benchmark Analysis of Sampling Methods for RRT Path Planning

[8] J. Zhang, Y. An, J. Cao, S. Ouyang and L. Wang, "UAV Trajectory

Planning for Complex Open Storage Environments Based on an

Improved RRT Algorithm," IEEE Access, vol. 11, pp. 23189-23204,
2023, https://doi.org/10.1109/ACCESS.2023.3252018.

[9] W. Lan, X. Jin, T. Wang and H. Zhou, "Improved RRT Algorithms to
Solve Path Planning of Multi-Glider in Time-Varying Ocean

Currents," IEEE Access, vol. 9, pp. 158098-158115,
2021, https://doi.org/10.1109/ACCESS.2021.3130367.

[10] M. Cao, X. Zhou and Y. Ju, "Robot Motion Planning Based on

Improved RRT Algorithm and RBF Neural Network Sliding," IEEE
Access, vol. 11, pp. 121295-121305, 2023,
https://doi.org/10.1109/ACCESS.2023.3327915.

[11] S. M. LaValle, "Motion Planning," IEEE Robotics & Automation

Magazine, vol. 18, no. 1, pp. 79-89, 2011,
https://doi.org/10.1109/MRA.2011.940276.

[12] L. G. D. O. Véras, F. L. L. Medeiros and L. N. F. Guimaráes,

"Systematic Literature Review of Sampling Process in Rapidly-

Exploring Random Trees," IEEE Access, vol. 7, pp. 50933-50953,
2019, https://doi.org/10.1109/ACCESS.2019.2908100.

[13] M. Faroni and D. Berenson, "Motion Planning as Online Learning: A

Multi-Armed Bandit Approach to Kinodynamic Sampling-Based

Planning," IEEE Robotics and Automation Letters, vol. 8, no. 10, pp.
6651-6658, 2023, https://doi.org/10.1109/LRA.2023.3311262.

[14] I. Mitsioni, P. Tajvar, D. Kragic, J. Tumova and C. Pek, "Safe Data-

Driven Model Predictive Control of Systems With Complex

Dynamics," IEEE Transactions on Robotics, vol. 39, no. 4, pp. 3242-
3258, 2023, https://doi.org/10.1109/TRO.2023.3266995.

[15] H. Wang, X. Zhou, J. Li, Z. Yang, and L. Cao, "Improved RRT*
Algorithm for Disinfecting Robot Path Planning," Sensors, vol. 24, no.
5, p. 1520, 2024, https://doi.org/10.3390/s24051520.

[16] I. Ahmad, M. Liaquat, F. M. Malik, H. Ullah and U. Ali, "Variants of
the Sliding Mode Control in Presence of External Disturbance for

Quadrotor," IEEE Access, vol. 8, pp. 227810-227824, 2020,
https://doi.org/10.1109/ACCESS.2020.3041678.

[17] Y. Huang and H. H. Lee, "Adaptive Informed RRT*: Asymptotically

Optimal Path Planning With Elliptical Sampling Pools in Narrow
Passages," International Journal of Control, Automation, and Systems,

vol. 22, pp. 241-251, 2024, https://doi.org/10.1007/s12555-022-0834-
9.

[18] S. Kaden and U. Thomas, "Optimizing Mobility of Robotic Arms in

Collision-free Motion Planning," Journal of Intelligent & Robotic
Systems, vol. 102, no. 49, 2021, https://doi.org/10.1007/s10846-021-
01407-0.

[19] Li Yuncheng and Shao Jie, "A revised Gaussian distribution sampling
scheme based on RRT* algorithms in robot motion planning," 2017 3rd

International Conference on Control, Automation and Robotics

(ICCAR), pp. 22-26, 2017,
https://doi.org/10.1109/ICCAR.2017.7942654.

[20] A. Faust et al., "PRM-RL: Long-range Robotic Navigation Tasks by
Combining Reinforcement Learning and Sampling-Based

Planning," 2018 IEEE International Conference on Robotics and

Automation (ICRA), pp. 5113-5120, 2018,
https://doi.org/10.1109/ICRA.2018.8461096.

[21] S. Levine, C. Finn, T. Darrell, and P. Abbeel, "End-to-End Training of

Deep Visuomotor Policies," Journal of Machine Learning Research,

vol. 17, pp. 1-40, 2016, https://www.jmlr.org/papers/volume17/15-
522/15-522.pdf.

[22] A. Giusti et al., "A Machine Learning Approach to Visual Perception

of Forest Trails for Mobile Robots," IEEE Robotics and Automation

Letters, vol. 1, no. 2, pp. 661-667, 2016,
https://doi.org/10.1109/LRA.2015.2509024.

[23] A. H. Qureshi and M. C. Yip, "Deeply Informed Neural Sampling for
Robot Motion Planning," 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 6582-6588, 2018,
https://doi.org/10.1109/IROS.2018.8593772.

[24] A. H. Qureshi, Y. Miao, A. Simeonov and M. C. Yip, "Motion Planning

Networks: Bridging the Gap Between Learning-Based and Classical
Motion Planners," IEEE Transactions on Robotics, vol. 37, no. 1, pp.
48-66, 2021, https://doi.org/10.1109/TRO.2020.3006716.

[25] J. D. Gammell, T. D. Barfoot and S. S. Srinivasa, "Informed Sampling
for Asymptotically Optimal Path Planning," IEEE Transactions on

Robotics, vol. 34, no. 4, pp. 966-984, 2018,
https://doi.org/10.1109/TRO.2018.2830331.

[26] Z. Wang, P. Li, Z. Wang and Z. Li, "APG-RRT: Sampling-Based Path

Planning Method for Small Autonomous Vehicle in Closed Scenarios,"

IEEE Access, vol. 12, pp. 25731-25739, 2024,
https://doi.org/10.1109/ACCESS.2024.3359643.

[27] A. H. Qureshi, A. Simeonov, M. J. Bency and M. C. Yip, "Motion
Planning Networks," 2019 International Conference on Robotics and

Automation (ICRA), pp. 2118-2124, 2019,
https://doi.org/10.1109/ICRA.2019.8793889.

[28] L. Li, Y. Miao, A. H. Qureshi and M. C. Yip, "MPC-MPNet: Model-

Predictive Motion Planning Networks for Fast, Near-Optimal Planning
Under Kinodynamic Constraints," IEEE Robotics and Automation

Letters, vol. 6, no. 3, pp. 4496-4503, 2021,
https://doi.org/10.1109/LRA.2021.3067847.

[29] A. H. Qureshi, J. Dong, A. Baig and M. C. Yip, "Constrained Motion

Planning Networks X," IEEE Transactions on Robotics, vol. 38, no. 2,
pp. 868-886, 2022, https://doi.org/10.1109/TRO.2021.3096070.

[30] S. Prokudin, C. Lassner and J. Romero, "Efficient Learning on Point

Clouds With Basis Point Sets," 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 4331-4340, 2019,
https://doi.org/10.1109/ICCV.2019.00443.

[31] M. Ghafoor and T. Akutsu, "On the Generative Power of ReLU

Network for Generating Similar Strings," IEEE Access, vol. 12, pp.
52603-52622, 2024, https://doi.org/10.1109/ACCESS.2024.3387306.

[32] Y. Takeishi, M. Iida, and J. Takeuchi, "Approximate spectral

decomposition of Fisher information matrix for simple ReLU

networks," Neural Networks, vol. 164, pp. 691-706, 2023,
https://doi.org/10.1016/j.neunet.2023.05.017.

[33] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization,"
Arxiv, 2015, https://doi.org/10.48550/arXiv.1412.6980.

[34] H. Iiduka, "Appropriate Learning Rates of Adaptive Learning Rate

Optimization Algorithms for Training Deep Neural Networks," IEEE
Transactions on Cybernetics, vol. 52, no. 12, pp. 13250-13261, 2022,
https://doi.org/10.1109/TCYB.2021.3107415.

[35] J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for

online learning and stochastic optimization," Journal of Machine

Learning Research, vol. 12, pp. 2121-2159, 2011,
https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf.

https://doi.org/10.1109/ACCESS.2023.3252018
https://doi.org/10.1109/ACCESS.2021.3130367
https://doi.org/10.1109/ACCESS.2023.3327915
https://doi.org/10.1109/MRA.2011.940276
https://doi.org/10.1109/ACCESS.2019.2908100
https://doi.org/10.1109/LRA.2023.3311262
https://doi.org/10.1109/TRO.2023.3266995
https://doi.org/10.3390/s24051520
https://doi.org/10.1109/ACCESS.2020.3041678
https://doi.org/10.1007/s12555-022-0834-9
https://doi.org/10.1007/s12555-022-0834-9
https://doi.org/10.1007/s10846-021-01407-0
https://doi.org/10.1007/s10846-021-01407-0
https://doi.org/10.1109/ICCAR.2017.7942654
https://doi.org/10.1109/ICRA.2018.8461096
https://www.jmlr.org/papers/volume17/15-522/15-522.pdf
https://www.jmlr.org/papers/volume17/15-522/15-522.pdf
https://doi.org/10.1109/LRA.2015.2509024
https://doi.org/10.1109/IROS.2018.8593772
https://doi.org/10.1109/TRO.2020.3006716
https://doi.org/10.1109/TRO.2018.2830331
https://doi.org/10.1109/ACCESS.2024.3359643
https://doi.org/10.1109/ICRA.2019.8793889
https://doi.org/10.1109/LRA.2021.3067847
https://doi.org/10.1109/TRO.2021.3096070
https://doi.org/10.1109/ICCV.2019.00443
https://doi.org/10.1109/ACCESS.2024.3387306
https://doi.org/10.1016/j.neunet.2023.05.017
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/TCYB.2021.3107415
https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

