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Abstract—Path planning is a crucial aspect of mobile robot 

navigation, ensuring that robots can safely travel from their 

initial position to the goal. In real-world applications, path 

planning is essential for autonomous vehicles, drones, 

warehouse robots, and rescue robots to navigate complex 

environments efficiently and safely. One effective method for 

path planning is the Rapidly-exploring Random Tree (RRT) 

algorithm, which is particularly practical in maze-like 

environments. The performance of RRT depends on the 

sampling methods used to explore the maze. Sampling methods 

are important because they determine how the algorithm 

explores the search space, affecting the efficiency and success of 

finding an optimal path. Poor sampling can lead to suboptimal 

or infeasible paths. In this study, we investigate different 

sampling strategies for RRT, specifically focusing on uniform 

sampling, Gaussian sampling, and the Motion Planning 

Network (MPNet) sampling. MPNet leverages a neural network 

trained on past environments, allowing it to predict promising 

regions of the search space quickly, unlike traditional methods 

like RRT that rely on random exploration without prior 

knowledge. This makes MPNet much faster and more efficient, 

especially in complex or high-dimensional spaces. Through a 

benchmarking analysis, we compare these methods in terms of 

their effectiveness in generating feasible paths. The results 

indicate that while all three methods are effective, MPNet 

sampling outperforms uniform and Gaussian sampling, 

particularly in terms of path length. The mean path length 

generated, based on a sample size of 30, is 13.115 meters for 

MPNet, which is shorter compared to uniform and Gaussian 

sampling, which are 18.27 meters and 18.088 meters, 

respectively. These findings highlight the potential to enhance 

path planning algorithms using learning-based sampling 

methods. 

Keywords—RRT, Path Planning, Sampling Methods, 

Benchmarking, Deep Learning 

I. INTRODUCTION 

Navigation is a necessary aspect of mobile robots, as it 

enables them to operate autonomously in dynamic and 

complex environments [1]. In real-world applications, 

navigation is crucial for ensuring that robots can perform 

tasks effectively without human intervention, whether it's for 

delivering goods in a warehouse, conducting inspections in 

hazardous areas, or monitoring crops in agriculture. 

Successful navigation allows robots to interact with their 

surroundings, avoid obstacles, and make real-time decisions 

to reach their destinations. It involves the ability of mobile 

robots to move through environments while avoiding 

obstacles and reaching their goals [2]. Safe and efficient path 

planning is mandatory in many mobile robot applications, 

such as industrial automation [3], search and rescue missions 

[4], surveillance [5], and even agriculture [6], where robots 

must navigate cluttered or unpredictable terrains. 

To achieve effective navigation, path planning algorithms 

play a central role by generating feasible routes that guide the 

robot from its starting point to the target location. Among the 

various path planning methods, one of the most widely used 

is the Rapidly-exploring Random Tree (RRT) algorithm. 

RRT is particularly well-suited for environments with 

complex or unknown geometries, where traditional grid-

based methods may struggle to efficiently explore the search 

space. The RRT is widely used for mobile robots, especially 

in intricate and high-dimensional spaces [7]-[10]. It was 

introduced by Steven M. LaValle in 1998 to address the 

limitations of traditional path planning methods, which often 

struggle to explore large and complex environments [11]. 

Technically speaking, RRT builds a tree of possible paths 

from the starting point toward the goal, making it a reliable 

method for navigating dynamic environments. 

Despite its prominence, the performance and efficiency of 

the RRT algorithm are greatly influenced by the sampling 

methods used to explore the search space. It is fair to state 

that an effective sampling strategy is necessary, as it 

determines the quality of the generated paths and the time 

taken to reach the goal. Different sampling methods, such as 

uniform and Gaussian sampling, offer varying levels of 

efficiency, affecting the success rate of the navigation task. 

Uniform sampling involves selecting random points from 

the search space with a uniform probability distribution. 

Every point in the space has an equal chance of being chosen 

[12]-[14]. Wang et al. use RRT with uniform sampling to 

ensure effective exploration of different regions. The method 

has practical applications for disinfecting robots in 

environments with complex obstacles, emphasizing 

efficiency and reliability in path planning [15]. 

On the other hand, Gaussian sampling involves 

generating random points around a mean with a certain 

standard deviation. Typically, a pair of samples are generated 

where one sample is near a randomly chosen point, and the 

other is farther away [16]-[18]. Some related research 

includes a study conducted by Yuncheng and Jie, who use the 

Gaussian sampling method for RRT path planning. Their 
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approach extends to higher-dimensional spaces, such as 3D, 

for practical applications in robot motion planning [19]. 

Meanwhile, deep learning-based sampling methods are 

revolutionizing the field of robotics [20]. Deep learning 

enables machines to adapt to intricate environments. It has 

significantly improved the capabilities of robots in 

perception, decision-making, and path planning [21], [22]. 

One notable application of deep learning in robotics is the 

development of the Motion Planning Network (MPNet), 

which has the potential to enhance the performance of path 

planning algorithms [23], [24]. MPNet leverages deep neural 

networks to predict promising regions of the search space, 

leading to more efficient and accurate path planning. 

In this study, we will compare and benchmark the 

performance of RRT using different sampling methods—

uniform, Gaussian, and MPNet—in a maze-like scenario. 

This comparison will help us understand the impact of deep 

learning on sampling efficiency and path quality in complex 

environments. The remainder of this paper is organized as 

follows. The necessary methods for RRT and the sampling 

methods are briefly explained in Section II. In Section III, we 

discuss the results of our simulations, covering the model 

building, simulation preparation, and analysis of the results. 

Finally, future work and the conclusions of this paper are 

presented in Section IV. 

II. RRT PATH PLANNING AND SAMPLING METHODS 

This section covers several topics. Subsection II.A 

introduces path planning with RRT, providing a brief 

overview of basic planning and the importance of appropriate 

sampling methods. Subsections II.B and II.C focus on the 

uniform and Gaussian sampling methods, discussing their 

respective advantages and disadvantages. Finally, subsection 

II.D presents MPNet as a more effective alternative for 

sampling. 

A. RRT Path Planning 

 The RRT algorithm was introduced by Steven M. LaValle 

in 1998 to handle high-dimensional motion planning 

problems [11]. The key feature of RRT is the ability to 

efficiently explore complex, high-dimensional spaces, 

making it useful for real-time path planning in many robotics 

applications [7]-[10]. 

 The RRT works by incrementally growing a tree rooted 

at the start configuration. In each iteration, a random sample, 

q_rand, is generated in the configuration space. The nearest 

node in the tree, q_near, is identified, and a new node, q_new, 

is created by moving from q_near toward q_rand by a fixed 

step size, ϵ. The fixed step size (ε) affects the exploration 

efficiency and path smoothness. A smaller ε allows the tree 

to explore the space in finer detail, potentially leading to 

smoother and more precise paths, but at the cost of increased 

computation time. Conversely, a larger ε enables faster 

exploration by covering more space with each step, but it can 

result in less optimal, jagged paths. 

 It should be noted that the new node is added to the tree 

as long as it lies in a free space. It continues this process until 

a node is added near the goal configuration, successfully 

generating a path [11]. 

The main steps in RRT can be summarized as follows: 

1. Sample a random point q_rand in the configuration space. 

2. Find the nearest node in the existing tree, q_near. 

3. Move from q_near toward q_rand by a step size ϵ to 

generate q_new. 

4. Check if q_new is in the free space. If it is, add it to the 

tree. 

5. Repeat until the goal is reached or a specified number of 

iterations is completed. 

 The efficiency in high-dimensional spaces makes RRT 

ideal for robot motion planning, autonomous vehicle 

navigation, and manipulation tasks. Nevertheless, in order to 

achieve such an efficiency, RRT needs a suitable sampling 

method [25]. They are crucial in RRT as they dictate how the 

configuration space is explored, by strategically selecting 

points in the space, the tree can grow efficiently, reaching 

different regions and avoiding unnecessary detours [26]. 

Proper sampling method improves the ability of RRT to 

navigate complex environments, such as those with narrow 

passages or obstacles. These methods also help balance 

exploration and exploitation, ensuring that the path toward 

the goal is both feasible and optimized. The right sampling 

strategy can significantly improve the performance of RRT 

and convergence rate. 

B. Uniform Sampling Method 

 Uniform sampling in RRT is a method where samples are 

generated randomly and uniformly across the entire 

configuration space [12]. Uniform sampling ensures that the 

tree grows in an unbiased manner, covering all regions of the 

space equally. This approach works well in large, open areas, 

as it prevents the algorithm from being overly concentrated 

in any specific region and ensures broad exploration [13]. 

Uniform sampling assists the RRT algorithm in efficiently 

discovering feasible paths while avoiding obstacles and dead 

ends. It is also easy to implement and does not require 

additional computations for generating samples [14]. 

 However, uniform sampling has notable limitations, 

especially in more complex environments. In environments 

with narrow passages or cluttered spaces, the random nature 

of uniform sampling often results in many samples being 

placed in open areas rather than in critical regions near 

narrow pathways. Since uniform sampling does not prioritize 

these narrow, solution-critical regions, it can take 

significantly more iterations to successfully navigate through 

tight spaces. Additionally, in large open areas, uniform 

sampling can lead to redundant tree growth because the 

algorithm may unnecessarily explore regions that are already 

well-covered, instead of focusing on areas closer to the goal. 

This inefficiency results in slower path generation and a less 

optimal exploration strategy, especially in environments with 

varying complexity. Thus, while uniform sampling is easy to 

implement, its lack of bias towards important regions can 

make it less effective in environments where strategic 

exploration is needed. 

C. Gaussian Sampling Method 

Gaussian sampling, as its name suggests, is a method 

where samples are drawn from a Gaussian distribution, 

focusing more on areas near obstacles or regions of interest 

[16]. This allows the RRT algorithm to concentrate its search 

in challenging regions, improving its performance in 

environments with complex geometries, such as narrow 

passages, where uniform sampling might struggle. By 

concentrating samples near obstacles, Gaussian sampling 
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helps the RRT algorithm explore critical, constrained areas 

with higher precision, improving its chances of finding 

feasible paths through tight spaces [17]. This method reduces 

the number of iterations needed to find a valid path compared 

to uniform sampling, especially in constrained spaces. The 

reason for this efficiency improvement lies in the fact that 

Gaussian sampling increases the likelihood of placing 

samples near difficult-to-navigate areas, such as obstacles 

and bottlenecks, where uniform sampling might overlook due 

to its equal treatment of the entire space. Focusing on these 

critical areas allows the algorithm to explore the essential 

regions earlier, shortening the search time. 

However, Gaussian sampling may require fine-tuning of 

key parameters, such as the variance of the distribution, 

which controls how spread out or concentrated the samples 

are around obstacles. To optimize these parameters in 

practice, techniques like cross-validation or gradient-based 

optimization can be employed, adjusting the variance to 

strike a balance between broad exploration and precise 

exploitation [18]. A properly tuned variance ensures that the 

algorithm effectively navigates through both open spaces and 

tight corridors. In this scenario, Gaussian sampling improves 

efficiency by focusing samples around walls and narrow 

doorways, allowing the mobile robot to quickly find paths 

through the complex layout without being overwhelmed by 

irrelevant open areas. 

While Gaussian sampling is particularly useful in 

scenarios where obstacles and tight spaces dominate the 

configuration space, its ability to selectively focus on critical 

regions is what gives it an edge over uniform sampling in 

terms of reducing the number of iterations and overall 

computational cost. 

D. Motion Planning Networks 

It is developed to tackle the limitations of traditional 

motion planning algorithms, which often struggle in high-

dimensional spaces and complex environments. Traditional 

path planning algorithms like RRT are computationally 

intensive and slow when dealing with intricate obstacles. In 

2019, A.H. Qureshi et al. introduced MPNet, which combines 

neural networks with classical sampling-based motion 

planning techniques. This hybrid approach enables the 

system to learn from past experiences and generalize to 

unseen environments [27]. Instead of randomly sampling 

points in every new environment, as done in methods like 

Gaussian and uniform sampling, MPNet is trained on a 

variety of past environments, allowing it to understand 

common path structures and efficiently apply this knowledge 

in new scenarios. When planning paths, MPNet focuses its 

exploration on the most promising regions, guided by its 

learned model, eliminating the inefficiency of random, 

potentially unproductive samples [28]. This focused 

exploration leads to the generation of shorter and smoother 

paths, reducing the need for post-processing to optimize the 

path. This innovation enables faster and more efficient path 

planning, as it can predict feasible paths even in challenging 

scenarios [29]. 

Furthermore, MPNet excels in high-dimensional spaces, 

where traditional methods face an exponential increase in 

complexity. By predicting points based on its understanding 

of the environment, MPNet avoids the inefficiencies of 

random sampling in such complex scenarios. As MPNet 

generalizes across different environments, it applies its 

learned knowledge to new spaces without needing to start 

from scratch, making it highly adaptable [30]. Finally, this 

informed sampling dramatically reduces the computational 

load, resulting in faster path planning and enabling real-time 

performance where traditional methods would struggle due to 

time constraints. 

Technically, MPNet consists of two main modules. The 

first module encodes the input map environment into a 

compact representation using a basis point set encoding 

approach [30]. This encoded representation is smaller than 

the original map, which is particularly beneficial in real-time 

scenarios, where map environments are typically large and 

sparse. Encoding the map reduces input data sparsity, lowers 

computational complexity, and shortens the training time. 

The encoded environment is then stored as a map object. 

The second module is a feed-forward neural network, 

consisting of an input layer, one or more hidden layers, and 

an output layer. Each hidden layer includes a fully connected 

layer, a ReLU (Rectified Linear Unit) activation layer, and a 

dropout layer. The ReLU activation layer introduces non-

linearity, enabling the network to capture and represent 

complex, non-linear relationships in the data [31], [32]. The 

dropout layer helps prevent overfitting by randomly setting a 

fraction of input units to zero during training. 

III. RESULTS AND DISCUSSION 

In this section, we will implement various sampling 

methods for RRT path planning on a mobile robot navigating 

a maze-like map. The robot starts from an initial position and 

must reach a designated goal. However, before proceeding, 

we need to prepare the data for training and validation, and 

create the MPNet model, as detailed in subsection III.A. Once 

the model is built, we can generate a new map with a defined 

start and goal for the robot, then apply the different sampling 

methods for RRT path planning. In subsection III.B, each 

sampling method is tested over 30 runs to generate a path 

using RRT. Finally, subsection III.C presents the analysis, 

evaluating parameters such as path length and initialization 

time to determine the most suitable sampling method among 

uniform, Gaussian, and MPNet for this scenario. 

A. Build the Model 

Before proceeding, we first need to explain the 

specifications of our simulation. We use MATLAB on 

Ubuntu 22.04 LTS to simulate and gather 80000 maze-like 

maps, splitting them in a 50:50 ratio for training and 

validation. These maps are represented as binary occupancy 

grids with two colors: black for stationary obstacles or walls 

and white for free space. 

The data is trained for 50 epochs, with shuffling applied 

at each epoch. Additionally, the Adam optimizer is employed 

due to its reliability and computational efficiency [33]. It is a 

robust algorithm for training deep neural networks, aimed at 

minimizing regret—a measure used to evaluate the 

performance of adaptive learning rate optimization 

algorithms [34]. It uses AdaGrad's approach to adapt learning 

rates for each parameter based on the gradients' history, 

helping with sparse data. At the same time, it incorporates 

RMSProp's ability to adjust learning rates based on recent 

gradient magnitudes, making it effective in non-stationary 

settings. Then, by combining these techniques, Adam 
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balances fast convergence with robust performance, 

especially in deep learning tasks [35]. 

The training is performed over 50 epochs, with a total of 

15250 iterations. As shown in Fig. 1, the training and 

validation losses are plotted on a logarithmic scale. 

 

Fig. 1. The training and validation loss 

 The losses are decreasing over time, and by the end of the 

15250 iterations, the training loss is 0.127, while the 

validation loss is 0.538. Since the validation loss is higher 

than the training loss, suggests potential overfitting. 

However, it is common and acceptable for the validation loss 

to be slightly larger than the training loss. Overfitting 

becomes a concern if the validation loss continuously 

increases as the training loss decreases. Since this is not the 

case here, the model is considered acceptable. 

B. Simulation on Binary Occupancy Map 

 First, we need to define the binary occupancy map, as 

shown in Fig. 2. 

 

Fig. 2. Binary occupancy map 

 The map has dimensions of 10 by 10, where the mobile 

robot's initial position is at (7, 1), represented by a blue 

square, and the goal is at (1, 9), marked by a blue star. There 

are walls obstructing the path, and the generated path must 

efficiently guide the mobile robot from the start to the goal 

while avoiding these obstacles. 

 The next step is to apply the RRT algorithm using 

different sampling methods to generate a path toward the 

goal. The results are shown in Fig. 3, Fig. 4, and Fig. 5 for 

uniform sampling, Gaussian sampling, and MPNet, 

respectively. 

 

Fig. 3. Path generated with uniform sampling 

 

Fig. 4. Path generated with gaussian sampling 

 

Fig. 5. Path generated with MPNet 
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 While all sampling methods successfully generate a path, 

it is clear from the figures that MPNet outperforms the others. 

RRT with MPNet efficiently samples points to create a direct 

path to the goal. In contrast, both uniform and Gaussian 

sampling tend to be less efficient, as they select points farther 

from the goal. Additionally, the paths generated with uniform 

and Gaussian sampling are too close to the walls, increasing 

the risk of collision. Therefore, the path generated by RRT 

with MPNet is more efficient and safer compared to those 

produced by uniform and Gaussian sampling. 

C. Benchmark Analysis 

In this section, we will run simulations for the sampling 

methods to generate additional paths. The RRT with each 

sampling method will generate 30 paths. 

It is evident that the path generated in each iteration will 

differ due to the inherent randomness of RRT. More 

importantly, from Fig. 6, we can see that MPNet (right) 

provides more convergent paths compared to the others. Both 

uniform (left) and Gaussian sampling (center) yield more 

variation than MPNet. We can further analyze this using 

statistical data for key parameters. Several parameters will be 

considered for analyzing the performance of these sampling 

methods. 

 

Fig. 6. Path comparison for each sampling method 

The first parameter is the success rate of RRT with each 

sampling method in generating valid paths from the initial 

position to the goal, which indicates the effectiveness of the 

algorithm. Statistically, the success rate for each sampling 

method in generating valid paths is 100%, as shown in Fig. 7. 

This high success rate is largely attributed to the relatively 

simple structure of the map used in this scenario, which lacks 

highly complex or challenging obstacles. 

 

Fig. 7. Success rate for finding valid paths 

The straightforward nature of the maze-like map allowed 

all sampling methods to consistently generate paths without 

failure. This implies that all of the methods can be 

implemented in our scenario for generating paths in a maze-

like map with a sample size of 30. However, in more complex 

environments with tighter constraints or intricate obstacles, 

the success rate may vary depending on the sampling method 

used. The next parameter to consider is the path length, which 

is important because we aim for the paths to be both effective 

and efficient. In this case, shorter paths tend to be more 

efficient, and vice versa. After running the simulations, we 

gathered the statistics for the path lengths for each sampling 

method, as presented in Table 1. 

Table 1. Path length 

Sampling Methods 

Path Length (meters) 

Mean Median 
Standard 

Deviation 

Uniform sampling 18.27 18.427 2.0727 

Gaussian sampling 18.088 17.726 2.0159 

MPNet 13.115 12.936 0.7231 

 

Based on Table 1, it can be concluded that MPNet not 

only provides the shortest path but also tends to be consistent, 

with a low standard deviation. The mean and median path 

lengths using MPNet are 13.115 meters and 12.936 meters, 

respectively. These values are lower compared to uniform 

sampling, with a mean of 18.27 meters and a median of 

18.427 meters, as well as Gaussian sampling, with a mean of 

18.088 meters and a median of 17.726 meters. The standard 

deviation for MPNet is also the smallest. Specifically, the 

standard deviations for uniform sampling, Gaussian 

sampling, and MPNet are 2.0727 meters, 2.0159 meters, and 

0.7231 meters, respectively. This indicates that the path 

lengths generated with MPNet are more consistent compared 

to the other two methods. The statistical visualization is 

shown in Fig. 8, where the box plot diagram for path lengths 

is presented. 

 

Fig. 8. Box plot diagram for path length 

A shorter path and consistent performance is crucial for 

real-world applications such as autonomous navigation. 

Shorter paths directly reduce the time and energy required for 

a robot to reach its destination, which is especially critical in 

scenarios like drone delivery, autonomous driving, or 

industrial robots where efficiency translates to operational 

cost savings and faster task completion. Consistent path 

lengths, indicated by a lower standard deviation, also ensure 

more predictable behavior in complex environments, which 

is important for safety, especially in dynamic and 

unpredictable settings.  
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As seen in Fig. 7, the median (Q2) for MPNet is the 

lowest, followed by Gaussian and then uniform sampling. It 

also shows that there are outliers for MPNet, where the path 

lengths exceed 14 meters. However, these outliers are still 

smaller than the median values for both uniform and 

Gaussian sampling, suggesting that MPNet yields better 

overall results. Additionally, Fig. 7 shows that the longest 

path is generated using uniform sampling, with a length 

exceeding 22 meters. In practical terms, longer paths and 

higher variability can lead to increased energy consumption, 

slower task execution, and reduced reliability, all of which 

are undesirable in time-sensitive or resource-limited 

applications. Thus, the ability to consistently generate shorter 

and smoother paths highlights its effectiveness in real-world 

navigation tasks. 

The last parameter to consider is the initialization time, 

which indicates how long it takes to initialize the function and 

execute it. The initialization time is measured during the 

execution of the planner. A shorter initialization time is 

desirable so that the generated path can be quickly built. 

Based on a sample size of 30 from the simulation, the 

statistics for initialization time are presented in Table 2. 

Table 2. Initialization time 

Sampling Methods 

Initialization Time (ms) 

Mean Median 
Standard 

Deviation 

Uniform sampling 5.74 5.74 0 

Gaussian Sampling 11.908 11.908 0 

MPNet 5.41 5.41 0 

 

As shown in Table 2, MPNet requires the shortest 

initialization time at only 5.41 milliseconds, whereas uniform 

and Gaussian sampling take 5.74 milliseconds and 11.908 

milliseconds, respectively. Interestingly, the initialization 

times are consistent for each method, with a standard 

deviation of 0. This consistency means that the minimum, 

median, mean, and maximum values are the same for all of 

them. As a result, when visualizing the data in a box plot, we 

get straight lines, as shown in Fig. 9. 

 

Fig. 9. Box plot diagram for initialization time 

In Fig. 9, we can see that the minimum, mean, median, 

and maximum values are all the same, and there are no 

outliers. 

IV. CONCLUSIONS AND FUTURE WORKS 

In this paper, we conduct a benchmark analysis of 

sampling methods for RRT path planning. The sampling 

methods—uniform sampling, Gaussian sampling, and 

MPNet—all successfully generate valid paths with RRT. By 

analyzing data from a sample size of 30 generated paths, we 

conclude that MPNet produces shorter paths compared to the 

other methods. The mean path length generated by MPNet is 

13.115 meters, which is shorter than the paths produced by 

uniform sampling at 18.27 meters and Gaussian sampling at 

18.088 meters. Moreover, MPNet tends to generate more 

consistent paths, as evidenced by its low standard deviation 

of 0.7231 meters. In contrast, the standard deviations for 

uniform sampling and Gaussian sampling are larger, at 

2.0727 meters and 2.0159 meters, respectively. Additionally, 

the initialization time for MPNet is the fastest, requiring only 

5.41 milliseconds, compared to 5.74 milliseconds and 11.908 

milliseconds for uniform and Gaussian sampling, 

respectively. The ability of MPNet to generate shorter and 

more consistent paths with faster initialization times makes it 

highly suitable for use in time-sensitive and resource-

constrained environments, such as autonomous navigation in 

warehouses where a shorter path can significantly enhance 

the efficiency of robots tasked with retrieving or transporting 

goods, reducing operational time and energy consumption. 

In the future, there are several directions for further 

research. We plan to implement RRT path planning on an 

actual mobile robot, and we are also considering developing 

a hybrid sampling method that combines Gaussian and 

uniform sampling. Such advancements could further 

optimize path planning for various real-world autonomous 

systems, pushing the boundaries of what these technologies 

can achieve in practical applications. 
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